
-AD-Alft 446 MUING A NAJOR PART OF A CLUSTERING ALSORITIU(U) vi1
PRINCETON UlNIV NJ DEPT OF STATISTICS K N HANSEN ET AL.
FEB SB TR-294 ARO-23360. S-NA DAL3-66-IC-SS73

WNCLASSIFIED F/O 12/3 NM.

i;7-= 3

tilt! r~U .2uin i~v~4 1.6
WOII " M2

*~ 138

1.25 __

IWOt

is;
.

UNCLASSIFIED 1 4ASTER COPY - FOR REPRODUCTION PURPOSES

I I-DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFIClATI m n T ,b. RESTRICTIVE MARKINGS

O"oIE~al P LECTE__ _ _ _ _ _ _ _ _ _ _

Za. SECURITY CIFION AU N. :A. R - 3. DISTRIBUTION/ AVAILABIUTY OF REPORT
.. . Approved for public release;
, D distribution unlimited.

AD-A 191 446 R S. MONITORING ORGANIZATION REPORT NUMBER(S)

ARO 23360.8-MA

Go. NAME OF PERFORMING ORGANIZATION lb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Princeton University (If pC) U. S. Army Research Office

Sc. ADDRESS (Cty, State, &nd ZP Code) 7b. ADDRESS (COly, State, and ZIP Code)

P. 0. Box 12211
Princeton, NJ 08544 Research Triangle Park, NC 27709-2211

Ga. NAME OF FUNDING/SPONSORING 6b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of #appk&e)

U. S. Army Research Office DAAL03-86-K-0073

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TASK WORK UNITP0.Bx121ELEMENT NO. NO. WO. ACCESSION NO0.
Research Triangle Park, NC 27709-2211 E

11. TITLE (/nclud SKurity Classification)

Tuning a Major Part of a Clustering Algorithm

12. PERSONAL AUTHOR(S)

Katherine M. Hansen and John W. Tukey

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Monh, Dy) S. PAGE COUNT
Technical I FROM TOI February 1988 32

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of he authr()and should not be constu d as an qffical Dartment of the Army position,Pr1 €,x nr .= .n an.= . . de&0 _.f =a . ^ = *^ ... n r l,,

17. COSATI CODES 18. SUBJECT TERMS (Contine on reverse if necessmy and idlenty by block number)
FIELD GROUP SUB-GROUP Clustering Algorithm, Algorithms, Clustering

Procedures, Gaussian Samples

'9. ABSTRACT (Continue on rneef necesmy and dentify by bkc number)

Most proposals for clustering algorithms have been based on inrospection.

Few proposed algorithms have had their performance studied. 4- qapproach

involves (a) striving to avoid comparing distances on remote parts of the data

(because metrics deserve only minimum trust), and (b) using a stochastically-
defined test bed to measure, and where possible understand, the performance
of an evolving algorithm, with the intent of using our understanding to modify

it in such a way as to improve its performance. -

Abstract continued on reverse side

20. DISTRIBUTION I AVAILAIITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION S
DUNCLASIFIEDOJNUMITED r- SAME AS RPT. C3 DTIC USERS Unclassified

Za. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473,e4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASS IFIED

.~

UNCLASSIFIED
OMWl WY CL*AWICATM OP TIO PA69 - - "

"e " T - st bed involves 3 circular Gaussian samples, of size 50 each,
centeredkat the vertices of an equilateral triangle of side (Idits use we
assumrefhat a 3-group answer is being sought. Thuj w only concern#d ',

with a part of the clustering process. I . I _ / Z " ",

Our early algorithms begin to misbehave in the range 5 t 7. Our
successive steps of improvement work at smaller and smaller t . The last
version we have tried still performs usefully (median misclassification about
16%) at t = 2.7, where knowledge of three populations would only let us hold
misclassification to a median of 13.3%.

Comparison(by Kay Basfor-Iwith a Gaussian maximum likelihood

algorithm on the same set of triple samples shows only slightly better
performance than for our algorithm.

UNCLASSIFIED
SECURITY CLASSIICATION OP THIS PACE

Tuning a major part of a clustering algorithm

by

Katherine M. Hansen and John W. Tukey

Princeton University
Fine Hall

Washington Road
Princeton, NJ 08544

Technical Report No. 294
Department of Statistics

Princeton University 08544

February 1988

Prepared in connection with research at Princeton University
sponsored by the Army Research Office (Durham), DAAL03-86-K-0073.

-I '

Tuning a major part of a clustering algorithm

Katherine M. Hansen and John W. Tukey

Princeton University
Fine Hall

Washington Road
Princeton, NJ 08544

i.

ABSTRACT

Most proposals for clustering algorithms have been based on introspection.
Few proposed algorithms have had their performance studied. Our approach
involves (a) striving to avoid comparing distances on remote parts of the data
(because metrics deserve only minimum trust), and (b) using a stochastically-
defined test bed to measure, and where possible understand, the performance
of an evolving algorithm, with the intent of using our understanding to modify
it in such a way as to improve its performance.

Our test bed involves 3 circular Gaussian samples, of size 50 each,
centered at the vertices of an equilateral triangle of side to. In its use we
assume that a 3-group answer is being sought. Thus we are only concerned
with a part of the clustering process.

Our early algorithms begin to misbehave in the range 5s 1 :5 7. Our
successive steps of improvement work at smaller and smaller t. The last
version we have tried still performs usefully (median misclassification about
16%) at t = 2.7, where knowledge of three populations would only let us hold
misclassification to a median of 13.3%.

Comparison (by Kaye Basford) with a Gaussian maximum likelihood
algorithm on the same set of triple samples shows only slightly better
performance than for our algorithm.

The steps of improvement will be discussed.

Aceession Fo r dde

NTIS GRA&I V'r I

DTIC TAB 0
Unannounced C

~~Justificattion .

Prepared in part in connection with research at Princeton University sponsored by the
Army Research Office (Durham), DAAL03-86-K-0073. B

Distribution/_
Avatlability Cod es -

Dist I peolL1

,.• , . , p .• . p .t,. :-, - ' i, , ' '% .=%' , %',,%'_%(: 0

Tuning a major part of a clustering algorithm

Katherine M. Hansen and John W. Tukey

Technical Report No. 294
Princeton University

Fine Hall
Washington Road

Princeton, NJ 08544

1. Introduction.

Since clustering ought to be an aspect of data analysis, we ought to plan to

take an empirical evolutionary approach to its conduct. This is done here for a

major part of the clustering problem: how to cluster given the number of

clusters to be sought.

PART A: Background and final performance

2. Clustering.

Some have argued that the purpose of clustering a set of points is to prove

that points belong to different groups. We have taken the opposite extreme,

expecting to have misclassification - - real problems are hard - - but striving to

minimize it.

Most clustering procedures can be persuaded to give rise to a variety of

answers; one putting all the points in one group, through putting them in two

groups, in three groups, and so on up to each point its own group. When, as is

most often the case, these subgroupings are nested - - e.g. every group of the

set of 4 groups is contained in one group of the set of three - - or of two - - the

Prepared in part in connection with research at Princeton University sponsored by the
Army Research Office (Durham), DAALO3-86-K-0073.

February 5, 1988

-2-

clustering is usually called hierarchical. Knowing where to stop the gathering-

together process is obviously very important. However, we have not tried to

work on this problem. Our work has focussed on doing a good job of making a

prechosen number of clusters, specifically 3.

Many procedures operate by adding links - - connections of one vertex

(one data point) to another - - step by step, often one at a time. Once two data

points have been joined by a chain of links, there is no need to join them

further. Thus most methods grow what are combinatorially trees, but what look

- - in 2 and 3 dimensions where we can look - - like vines. We shall call sets of

vertices linked in a way that includes no cycles vines.

Most clustering procedures begin with either an overall criterion or a •

next-link-to-be-added rule. These criteria or rules typically come down from on

high, like the famous tablets of stone. One can then only illustrate their

performance. Our work has focused on evolving an algorithmic procedure, step

by step, by looking for weaknesses of performance in the current algorithm,

and then trying to find helpful modifications.

Most clustering procedures use single criteria or single rules. We have

found it important to use successive steps that use quite different rules or

criteria in different steps.

All clustering procedures use distance measures, or some sort of

surrogate. We have confined ourselves to starting with Euclidean (L (2))

distance, but have emphasized the rank of the nearness of other points to a

selected point. Thus each link, say AB, has two such ranks, one for how near

February 5, 1988

-. V / or e W W or V • 0 "

-3-

(rankwise) a neighbor B is to A and one for how near (rankwise) a neighbor A

is to B.

3. Test bed.

Our basic tool in evolving our procedures has been triple samples, of 50

each, from 3 circular Gaussian distributions, centered at the vertices of an

equilateral triangle of side ta . We have found 10 triple samples, for each t,

enough to guide us in making the next step of improvement. More would, of

course, be needed if one wanted more precise assessment of algorithm

performance. We have drawn fresh sets of 10 triple samples for each t, so that

performance consistency for nearby t offers independently supportive evidence.

We have so far used, successively, t=7, 5, 4.5, 4, 3.7, 3.2, 2.9 and 2.7.

We judge the performance of any procedure on a triple sample by the

number of points misclassified - - specifically by the number of minorities, see

below. The performance on a set of 10 triple samples is then measured by the

median, or perhaps the mean, of the number of misclassifications.

4. Perfonnance of the currently preferred procedure.

test bed *

We now describe briefly the performance of the procedure summarized in

Section 16, which is our currently preferred choice, both on the test bed and on

some real data.

Two extremes of the 10 realizations of the test bed for t=2.7, one easy b

and one hard, are shown in exhibit 1. The numbers of misclassifications are 16

February 5, 1988

-4-

and 73, respectively. If we knew the 3 population distributions exactly, there

would be an optimum partition of the plane into 3 1200 sectors. Classification

by these sectors would have made 16 and 26 misclassifications, respectively.

(The median (mean) numbers of misclassifications, over the 10 realizations are

25.5(29.7) for the procedure, and 20(21.3) for infinite knowledge.)

exhibit 1 about here

With only 3 samples of 50 each, we come, in median, within 5 of the

number of misclassifications corresponding to knowing the populations (but not

how many observations come from each). Any substantial further

improvement seems unlikely.

In cooperation with Dr. Kaye Basford, the same sets of triple samples have

been analyzed using a Gaussian maximum likelihood procedure (Basford and

McLachlan, 1985), which does slightly better than ours (and, of course, still

not as well as population knowledge). Since real data is not likely to be exactly

Gaussian, and since no Gaussian assumption was explicit in our development

(or visible in the final procedure) it is reasonable to hope that our procedure

will at least equal the performance of Basford and McLachlan's on real data.

* real data *

Our main test bed is conveniently 2-dimensional (3 population centers

define a plane), but our algorithms make no explicit use of this fact. Thus we

have no difficulty applying them to more dimensional data.

Our first real example is the well-known Iris data, due to Edgar Anderson

February 5, 1988

U- * '%~~ %*.% .~.,V ~ ~ % %sI% % % ~ U~.V%\

-5-

(1935) and used by R. A. Fisher (1936) in his basic paper on the discriminant

function. In the present context, we neglect the information about species

(there were 50 observations on each of 3) and use only the 4 coordinates (petal

and sepal length and width) of each blossom. We find only 23

misclassifications (all of, course, involving the two most similar species).

Standard methods give 31, 50 and 47, respectively.

Our second real example is geochemical, involving analyses of chemical

results for samples from 3 carbonate microfacies (here labelled 1, 2, and 6).

Several views of the data are given in exhibit 2. The first of 12 variables

represents the weight percent of insoluble residue for each sample. The

remaining variables represent concentrations of eleven elements. For this data,

our procedure, given an exogenous choice of three as the number of clusters,

makes only 3 misclassifications. (Earlier attempts with classical clustering

procedures were quite unsatisfactory; 17 misclassifications for complete linkage

and single linkage, 18 for average linkage. Ward's method gave 7

misclassifications.) (Data for the geochemical example provided by the courtesy

of Ms. Ruth Strauss.)
I

exhibit 2 about here 9

5. What we have not yet done.

By limiting our more careful systematic studies to test beds involving

- exactly 3 populations
I

- each circular in shape

February 5, 1988

-6-

_ symmetrically placed

_ in 2 dimensions

- Gaussian in shape

we have clearly only begun a careful investigation.

We have done a little to explore (a) a similar test bed in 5 dimensions, (b)

a similar 2-dimensional test bed with 3 populations of different variances ar d_

(c) a 2-dimensional test bed with 3 populations of different shapes. Our results

have been sketchy but encouraging in all cases, (see Sections 18 to 20) as have

very preliminary looks (not discussed further here) at ways to "squeeze down"

unneeded dimensions.

What can be done, once an overall clustering has been completed, to look

at pairs - - or other small groups - - of clusters separately, with a view to

polishing the clustering, is uncertain.

Clearly much further exploration would be helpful.

PART B: Evolution of our procedures

6. Initial choices.

The shakiest part of any clustering procedure is the choice of the metric.

No one has seen any way to avoid its use, directly or indirectly. Equally, no

one has seen any way to use the final clustering as a basis for improving the

choice. Alas, alack-a-day!

The sort of difficulty that can arise is well shown in exhibit 3, where a

February 5, 1988

---------- , ~ %

-7-

classical clustering procedure is run on data naturally falling into 3 groups of

differing spread.

exhibit 3 about here

On careful examination, however, while it is apparent that while we must

use the metric locally, it is far from obvious that we need use it globally. By

focusing on the nearness-rank of each link from both ends, we focus on only

relatively local uses of the metric.

While we do use the original metric for tie-breaking, it seems unlikely that

such uses have substantial effects on the outcome of our procedure.

What we would like to have - - and have only begun to approach - - would

be a near invariance of result when, for instance, one coordinate,

y, 1 < y < 10, were replaced by ey . It seems likely that further steps on

such a direction m;,.t come from procedures to reconfigure coordinates rather

than from clustering procedures themselves.

7. Nearest neighbors and total minorities.

Our methods are all based on ranks of neighborliness, equal to j if a point y

is point x 's /h nearest neighbor, that is, when exactly j- 1 points are closer to

x than is y. Note that this is not necessarily a symmetric relationship, i.e. x

need not be y's j"h nearest neighbor. We measure nearness using the

Euclidean L (2) norm.

The goodness of our cluster solutions on the triangular Gaussian test beds

is measured by a total minorities criterion, which is computed as follows:

February 5, 1988

. I -. 1' ". r *,,S # '¥ ' ~ .,l/ a_" .. _, d V .. ' " " "e..y'e.a*, "." " .Z g, 'eN.'. "L'2 ..NK .. ' .X '..' ° .a"". .'.'€ .'.

-8-

" run the algorithm until exactly three clusters remain

* count the number of points in each output cluster coming from a

minority subswarm (from either subswarm other than the single subswarm

occurring most frequently)

* add up these counts, to find the total minority count.

For example, with the following output:

subswarm subswarm subswarm 0

A B C Minorities

cluster # 1 45 7 2 9
cluster # 2 3 35 0 3
cluster # 3 2 8 48 10

22

the total minority count is 22.

8. Minrank and maxrank - the first approach

Our initial algorithms are based on some simple properties of links

between points. Consider a link joining two points, x and y. The link may be

classified according to two ranks. If point y is point x's R,,h nearest neighbor

and point x is point Ryh nearest neighbor, then define the following:

minrank = min(Rx RY

maxrank = max(RX. RY }

It is these quantities which we plan to substitute for distance. With either

minrank or maxrank as our basic unit of link length, we will have a substantial

problem with ties. Both here and later we shall break ties with Euclidean

distance; however we will soon move to a criterion which has much less

February 5, 1988
* ** ,"

-9-

difficulty with ties.

Thus, if we are using maxranks, the first link to be added will be the

shortest of all links having a maxrank of 1.

Both the minrank and maxrank methods were tested on the test beds with

t=5 and 1=7. Results are shown in exhibit 4. The performance of both

algorithms is fair over most trials at t=7, and is poor at t=5. It seems that

minrank does a better job than maxrank.

exhibit 4 about here

However, when we plot the actual vines, we have reason to suspect that

using maxranks may be the more promising approach. This is due to the

simple character of many of the maxrank failures.

exhibit 5 about here

Exhibit 5 shows a poor maxrank solution for t=7. For this data set (total

minorities = 49), we have been left with one very small cluster out of the

three we have asked for. This is not surprising since a rather isolated point is

likely to produce only links with large maxranks. Such a point will be added to

a vine late in the selection process. This problem may be easier to diagnose

.and correct than the problems with the minrank algorithm.

9. The basic criterion.

We want to force links to isolated points to be added to vines earlier in the

process. One way of identifying such links is by noting the sizes (counts) of

the two vinelets (protoclusters) that would be joined by adding the link. For an

February 5, 1988

'5J

, - 4 i t ' iF " - 5 - II ° - :k d - - -

- 10-

isolated point the lesser of these counts will be one, so that we might consider

a link-criterion of the following form:

basic criterion = (5 + maxrank)(1 + In (lesser of counts)).

At each step we add the link with the lowest criterion value, again breaking ties

with the Euclidean distance between the two points joined by a link. Note that

since cluster counts increase at each step, the basic criterion value for each edge

must be recomputed regularly.

exhibit 6 about here

Exhibit 6 shows the performance of this technique for t=4, 4.5, and 5.

With t=5, performance is quite good; results for t=4 and 4.5 are not as

satisfactory. Note, however, that at t=4 the performance of the basic criterion

surpasses that of the minrank and maxrank algorithms at t=5.
,-

At this part, we tried using minrank and (arithmetic and geometric)

meanrank in place of maxrank in the definition of the basic criterion. Different

values of the constants were tested. These adjustments did not give improved

results.

As before, we turn to pictures of vine-clusters to reveal configurations

giving poor results. Exhibit 7 shows the worst of the ten trials for t=4.5; this

gave 44 total minorities. Clearly the difficulty lies with the filament running

horizontally across the picture. We need to find ways to improve on such

vines.

exhibit 7 about here

February 5, 1988

10. Using core points - the basic method.

We would like to be able to emphasize certain "core points" which lie near

the centers of each subswarm. If we can identify such points - - we shall

suggest three ways of doing so - - we can build the framework of a cluster

solution based on them.

Suppose that we have a list of about 50 core points, ignoring for the

present how this list was obtained. Then we can use the following basic core-

growing technique:

* Start from the beginning with this reduced set of points, using the basic

criterion algorithm to add links until exactly three clusters, involving only

the 50 points, are left.

" Treat this structure as the beginning of a vinery for all 150 points.

" Links are now added - - between single points and pre-formed groups of

size > 2 (in practice, usually > 15) until only 3 clusters remain - - in the

order determined by the basic criterion, which in this case is equivalent to

maxrank.

The three core-point vines serve as foundations to which the other points are

added.

11. Identifying core points I - high-order and vine neighbors.
N-

One property of points in a vine is their order, or the number of links

joining them to other points. The central part of the long filament running

across the picture of Exhibit 7 is unbranched - - that is, all of the points are of

February 5, 1988

,IL

- 12-

order < 2. This suggests that we define core points based on properties related

to order. Our first type of core points was identified as follows:

* run the basic criterion algorithm until a complete (n- 1 links) vine has

been generated,

* from this vine, choose as core points those points that

(a) are of order > 3 or

(b) are a vine-neighbor of such a point AND are on an arc of links joining

one point of order > 3 to another such.

The points satisfying these criteria for the data of exhibit 7 are in exhibit 8.

These points do seem more clearly separated into three parts.

exhibit 8 about here

Results for the basic core-cluster technique with core points satisfying the

above criteria for the t=4 and 4.5 data sets are given in exhibit 9.

exhibit 9 about here

We see a small improvement over the basic criterion method at r=4; this

was not repeated at t=4.5. Examining pictures of core clusters indicates that

inclusion of vine-neighbors of high order points may be responsible for some of

the problems. It is this observation that leads us to the next method of

describing core points.

12. Identifying core points II - high-order.

We now identify only points of order 3 as core points. The basic core-

February 5, 1988

-13-

cluster technique applied to these points for t=4 and 4.5 gives the results

summarized in exhibit 10. A considerable gain over both the basic procedure

and the first core-point procedure has been achieved.

exhibit 10 about here

13. Identifying core points III - local density.

A third way to select core points is to choose points lying in regions of

high point-density, since these regions are likely to represent cluster centers.

However, we do not wish to use a global measure of density directly - we want

to use local properties to identify core points. To do this takes a several-step

procedure. The approach we use is as follows:

* Build a complete spanning vine (combinatorially a minimum spanning

tree) using the basic criterion.

e Find the density (global) at each point, defined to be (distance to 10 h

nearest neighbor) - 2 (other exponents might be appropriate for dimensions

other than 2); other constants than 10 would be appropriate for other total

numbers of data points.

9 Compute for each point on the vine the following:

logdens = log(density).

* Smooth logdens on the vine as follows:

- For a point of order 1, do not change logdens.

- For a point of order 2, replace logdens by the median of logdens

values at the original point and at the two directly linked points.

February 5, 1988

-14-

_ For a point of order > 3, replace logdens by the second-highest of

the logdens values at the original point and at each directly, linked

point.

" Continue smoothing cycles until no further changes take place.

" Find all local maxima - - points which are not linked to higher density

points - - either directly or through points of equal logdens.

e For every point, record the difference in logdens (log ratio of densities)

from the highest local maximum that can be reached monotonically along

the vine. (A local max can be reached monotonically along the vine from

a point if an arc of links connects the two and if the logdens values at the

points along the arc increase weakly monotonically towards the local

maximum.) We use small logdens differences (zero for local maxima) as

our measure of high local density.

e We want about 1/3 of the total points to be identified as core points.

We will choose all of the local maxima and will select others in order of

increasing logdens difference. Due to the smoothing of logdens values on

the vine, it sometimes occurs that several points with equal logdens

differences are tied for the 50th position on the list. In this case, none of

the tying points are chosen as core points, and the total number of core

points is less than 50.

exhibit 11 about here

Using the above approach to select 50 core points for each data set at r=4

and 4.5, we obtain the results given in exhibit 11. The algorithm represents an

February 5, 1988

,,e

15 -

improvement over the basic-criterion algorithm, and seems to be comparable in

performance to the high-order algorithm. Exhibit 12 gives results for the local

density and high-order algorithms with the t=3.2 and 3.7 data. For these data

sets, the local density method generally gives lower minority counts.

exhibit 12 about here

If all the data points adhere closely to a smooth curve - - which might be a

straight line - - then the complete vine will have no points of order > 2 and

there are no high order core point so the first two approaches fail. However,

the local density approach will still apply!

14. Basic bisector polish.

Examining pictures of vine-clusters formed from core points, we discover a

pattern common to many of the failures of the local density and high-order

algorithms. Exhibit 13 is a good example.

exhibit 13 about here

The core points of each cluster are centered in an appropriate location, yet

branches to outlying core points bring in data points from other subswarms.

We would like to use information about the location of the core-point clusters

without allowing distant points to join in the cluster. The easiest way to do this

is to give up our reliance on handling links one at a time, in fact to limit the

use of links to the core-point clusters. We suggest the following approach:

Grow vines of core-points using the basic criterion, continuing until

exactly three core-clusters remain (can a good stopping rule be found %

February 5, 1988

'~~~~~~.'~~~~~~~d~~ IN I N W ' A ' A ' A ~ A " % N '

IR

- 16-

here?)

* Calculate the centers of gravity of the points constituting each core-

cluster.

* Calculate the Euclidean distance from each data point to each center of

gravity. A data point is assigned to the cluster corresponding to the

nearest center of gravity. (Note that some core points might be re-

assigned to clusters other than their initial core-cluster.)

For the case of three clusters, the algorithm described above is equivalent

to separating the clusters by the perpendicular bisectors of the triangle with

vertices at the three centers of gravity. Exhibit 14 shows the bisectors for the

data of exhibit 13, using the local density core points. The number of

minorities has been reduced from 32 to 12.

exhibit 14 about here

15. Bisector polish - notes, results, and comments.

We can use the basic bisector polish algorithm with either the high-order

or the local density core points. We can also iterate the process by running the

basic bisector polish algorithm and then computing the centers of gravity of

each of the completed clusters. Points are then re-classified according to their

distance from each of the iterated centers.

PART C: Performance of current algorithm

February 5, 1988

.if - - .% I .* *** * V - , V.. W N.%tp
1

-17 -

16. Comparative performance. !U4

Results from the basic bisector polish and the iterated bisector polish

algorithms for t = 2.9 are given in exhibit 15.

exhibit 15 about here

As we can see, bisector polishing represents an improvement over both theAsZ

high-order and local density methods. Exhibit 16 gives the results of bisector

polishing when population means are used in place of core-point centers of gravity.

These are the best fixed partitions that can be chosen. Their performance gives

a lower bound to the number of total minorities we might reasonably expect.

exhibit 16 about here

A brief comparison with standard methods of clustering is given in exhibit

17. ,.
,.-

exhibit 17 about here

17. Current preference.

Our current recommendation then is the following overall algorithm:

A) Use the basic-criterion algorithm (Section 9) - - with its step-by-step

insertion of links - - to form a single spanning vine containing all data

points.

February 5, 1988

IL"

-18-

B) Use the local-density algorithm (Section 13) - - with its near-neighbor

density, vine smoothing, and differencing - - to identify core points.

C) (Here would be a logical place for a step to identify how many clusters 4

we want.)

D) Use the basic-criterion algorithm (Section 9) again, this time on the
',.

core points only, to form 3 clusters.

E) Starting with the centers of gravity of these 3 clusters, use the iterated

bisector algorithm (Sections 15, 16) to assign every point to one of the

three clusters.

Notice the presence of 4 or 5 steps, using at least three wholly different

algorithms. Our preferred procedure is not simple, but it seems to be effective.

Notice also that, while steps (A), (B), and (D) - - presumably together P

with (C), when such becomes available - - do fairly well in focusing on local

comparisons of distances, step (E) compares much larger distances. A plausible
place for a further step (after E) would involve looking even more carefully at

pairs of adjacent clusters with the intent of improving their separation.

a
PART D: Sketches of further explorations

.7.

18. 5-dimensional test bed. '"

We have looked briefly at 5-dimensional test beds constructed as follows:

'4.

* two of the dimensions represent the familiar circular Gaussians, with 3

subswarms centered on the vertices of an equilateral triangle of side ta

February 5, 1988

- 19-

the remaining 3 dimensions are independently sampled from the

standard Gaussian distribution.

We tested the basic and iterated bisector polish algorithms on 10

realizations of the 5-dimensional structure at each of t = 3.2, 2.9, and 2.7. In

terms of the median number of misclassifications, the basic bisector polish

algorithms were inferior to the corresponding iterated bisector polish

algoirthms. Exhibit 18 shows the results for the iterated bisector polish

algorith m s.

19. Unequal-variance test bed.

4All of the core-point algorithms were tested on a series of synthetic data

sets containing 3 circular Gaussian subswarms of unequal variance. As before,

the subswarms are centered at the vertices of an equilateral triangle, the

triangle has sides of length (-41+ 24-)Xa ' where the first subswarm has
2 2

variance (Y2, the third has variance 302. We generated 10 such data sets at

each ofX= 3 and . = 2.7.

The iterated bisector polish algorithms out-performed both the basic core-

point and bisector polish methods. Results for the iterated bisector polish

algorithms are summarized in Exhibit 19. Exhibit 20 shows the results from

classification by maximum likelihood and the population bisectors. Each of the

densities was completely specified for the maximum liklihood calculations; only

the means were used to calculate population bisectors.

February 5, 1988

.. .. * ~ ",~

- 20 -

20. Unequal-shape test bed.

We generated series of test beds containing 3 2-dimensional Gaussian

subswarms of unequal shape. The subswarms lie along an horizontal line

segment of length 2t, we centered at each endpoint of the segment; the third

subswarm is centered at the midpoint. The central subswarm has standard

deviation a in the direction parallel to the segment and 3a in the direction

perpendicular to the segment. The subswarms at the endpoints of the segment

are circular Gaussians with standard deviation Y.

We generated 10 test beds for each of t=3.7 and 3.2. Exhibit 21 shows

two realizations of the unequally-shaped test beds. Results for the iterated

bisector algorithms are given in Exhibit 22.

REFERENCES
I.,

Anderson, Edgar (1935). 'The irises of the Gaspe Peninsula," Bull. Amer. Iris

Soc. 59: 2-5.

Anderson, Edgar (1936). 'The species problem in Iris," Ann. Mo. Bot. Gdn.

Basford, K. and McLachlan, G. J. (1985). "Likehood estimation with normal

mixture models," Appl. Statistics, 34: 282-289.

Fisher, R. A. (1936). 'The use of multiple measurements in taxonomic

problems," Annals of Eugenics, 7: 179-188.

February 5, 1988

o " 0

0 0 0 0 0

o °o O °°°• .
O0 o ' o o 0

a 0.k%
0 .LPO

00 0 L %0
00 0 @W0 .

o~ ~~~ ~ ~ Oo° Oo0,0, o•,9,O .
oo oo :% oo 0000

0 0 0 0 Cg

00

0I I N I00

-4 -2 0 2 4 6

.5J

(0

0 0 0 0 0

00

0

0 0 0 0~

o "0 0 % 0

-4 -2 0 2 40EHBT:Twinaceo easy, o hard o zest be rpl apis(o

0 C2.7 T p e p0 .i 0 0 -

,c00o0 f h 0

0 W

-4 -2 0 2 4 6

EXHIBIT 1: Two instances, one easy. one hard, of test bed triple samples (not
separately identified) for t - 2.7. The preferred procedure gave 16, b.
misclassifications for the upper set and 73 for the lower set.

qiml u "r,.,,,.+. ... , .. ,e. -. px ...'+,,._,+-. .. ,,',,. .- -..,., .' ,,' ' ..'",Z " : ".. ".+++.".,;',.'. -'" "'£ '£," "" "" "' " "-" ",". %" ,,'" .JA

2
2
2

6
6 6 2

2

6 6 6q
2 2

6 6- 2 666: 22

O 2 2 6 2 6 6

211

I I p I I

-2 -1 0 1 2 3 4 -2 -1 0 1 2 3

Ca Cr

In

6

U, 6
'IIj

C 66 66 6

2 6 6
2

2i 2 2 6 6
2 2

4 12 2 2 2
1 6 6 1 26

112 1 1 1122 ~2
• 2 2 2

4, , I I I I I I

-2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4

Fe Na

an U

6

6

M6 s6 6 6

* 6

- 61
646Co

Cd

-1 0 1 2 3 4 6 -2 -1 0 1 2 3

Fe Ce

EXHIBIT 2: Six views of the geochemical data. (Plotting character - facies number.)

.

c\l

%4

10100 53

EXU r :Rsl f unn h igelikg lseigagoih nadt e

cotiigtre(0wrsofueulvrac.Tefrs w usampotda
cicls ndsqars hveben ere itoon cuse. hethrdsusar, it geae

oO Ao % I

-5051 52 53

EXHIBIT 4: Some sample results on total minorities for the first approach.

TOTAL MINORITIES

maxronk minrank
t-70 t-500 t=700* t-50****

Median 25h 63 0 47

uHinge 49 97 50 50
Max 53 98 86 92

(Mean) 25.3 66.9 18.9 39.7
S

Actual total minorities: 0,0,0,0,2,49,49,49,51,53
* Actual total minorities: 1,50,51,51,51,75,97,97,98,98

'* Actual total minorities: 0,0,0,0,0,0,2,50,51,86
*** Actual total minorities: 1,2,10,38,47,47,50,50,60,92 S

Note: We use "h" for "and a half" in reporting medians or hinges, where this is the only kind of non- ,

integral value that can appear; we use. ".5" for "and a halr in reporting means.

V..

",,5,,'

N

, ,. ,- . -- - . - , . ,_... -, -, , . €,.:..:,::..:.;..:....., .

Ioo

0

a.

CD

9C.

I '1

-4 -2 0 2 4 6 8 10

EXHIBIT 5: A poor maxrank soludon (49 total minorities) for t - 7. The reason for the
failure is clear the lone point at the center of the picture produces links with very high
maxranks. In the full spanning vine, this point was joined to two other points by links
with maxranks of 12 and 41.

EXHIBIT 6: Some sample results on total minorities for the basic criterion algorithm.

TOTAL MINORITIES

t-5* t-4.5** t-4***

Median 5h 13 21h

uHinge 13 26 31

Max 27 44 40

(Mean) 9.3 17.5 21.0

* Actual total minorities: 1,4,4,5,5,6,7,13,21,27

* Actual total minorities: 3,3,10,11,12,14,24,26,28,44
*** Actual total minorities: 6,8,8,11,21,22,27,31,36,40

Note: For "h" see note to Exhibit 4. 0

0 '

%~

V

RN- ~

CO

(D

vI

CDi

C4",

',

-4 -2 0 2 4 6 8

EXHIBIT 7: The wornt of ten solutions for t-4.5 by the basic criterion algorithm, this !

configuration yields 44 total minorities. Note the filament running through the center of
the picture connecting the square and circle subswarms, through two points of the third
subswarm. In the central region between the two subswarms, no branches split off from
the filament.

I

i , ~ ~ ~ ~ X. 17.i,- :h i~
r

AvnViG- . KYVA, A -1 ,. r. L, r. 1 L 1, g,.ret X). V J w W.. W

CO

+
+ a0 +

+ 0+C 0
+0o

0 + 00
+ +

+ + +00+

-0. 04 +
+

0 0 0
0

+ ++ ".-I-~

0 +0

-4 -2 0 2 4 6 8

EXIBIT 8: The high-order (circles) and vine-neighbor (crosses) core points for the
data of Exhibit 7. As suspected, the core points appear to be separated into three groups.
Note that the high-order points alone give a cleaner separation; it is this observation that
leads us to our second definition of core points.

* P ~ ~ p . d? *~/J~ ' ~ .5i511 r

EXHIBIT 9: Minority counts for the basic core-cluster technique using the first type of core points.

TOTAL MINORITIES

t-4.50 t-4**

Median 17 16h

uHinge 23 31

Max 53 34

(Mean) 18.0 19.3

Actual total minorities: 3,6,6,9,16,18,21,23,25,53

* Actual total minorities: 5,9,9,9,10,23,31,31,32,34

Note: For "b" see note to Exhibit 4.

I.

%%.

EXHIBIT 10: Total minorities for the basic core-cluster technique using the second type of core points.
Note the improvement over results from the first typ~e of core points (Summarized in Exhibit 9.)

TOTAL MINORITIE

t-4.5* t-4**

Median 9h 10
uHinge 13 23

Max 21 29

(Mean) 10.8 13.2

*Actual total minorities: 3,3,7,8,8,11,13,13,21,21

0* Actual total minorities: 4,5,6,8,9,11,12,23,25,29

Note: For "h" see note to Exhibit 4.

,N.-6

EXHIBIT 11: Minority counts for the core-cluster technique with core points identified by the local

density algorithm

TOTAL MINORITES

t-4.5* t.A4*

Median 8 Ilb

uHinge 10 20

Max 14 44

(Mean) 8.1 15.4

*Actual total minorities: 3,3,6,6,8,8,10,10,13,14

** Actual total minorities: 5,6,8,9,11,12,13,20,26,44

Note: For "h" see note to Exhibit 4.

dq

EXHIBIT 12: Comparison of local density and high-order algorithms at t-3.2 and 3.7.

TOTAL MINORITIES

high-order local density

t-3.7" t-3.2* t-3.7"** t-3.2****

Median 23h 34h 20 28
uHinge 38 47 31 38

Max 43 59 47 51

(Mean) 27.7 38.2 22.6 27.5

* Actual total minorities: 17,18,19,21,22,25,36,38,38,43

* Actual total minorities: 22,31,31,34,34,35,41,47,48,59
* Actual total minorities: 7,11,16,17,19,21,25,31,32,47

* Actual total minorities: 12,12,16,19,25,31,32,38,39,51

Note: For "h" see not- to Exhibit 4.

%%

',.

S,',

oO ,.

'S

95

D

(00

0I

*)

0 "P

CO 00 00

0 0
o o° n 0

C 0]

0 0 0

N" C

..

EXHIBIT 13: Core point vines for t = 3.7. The core points were identified
using the local density algorithm. Note that the clusters are centered appropri-
ately, yet branch outwards, bringing foreign points into two of the clusters.
This solution gave 32 total minorities.

(00

0

o 0

0rC 00 El E

0
0 0 0 E E

0 0 6) El
0 0 0 E

-4 - 0 20

EXHIBIT 14: The triangle formed by the three centers of gravity for the data of Exhibit
13. The perpendicular bisectors, as drawn, separate the three output clusters. The number
of minorities has been reduced by well over one-half, to twelve.

0

EXHIBIT 15: Minority counts for the basic biscetor polish and iterated bisector polish algorithms for

t-2.9. Note that performance is better than that of the first core cluster techniques at t=3.2, as summarized

in Exhibit 12.

TOTAL MINORITIES (t - 2.9)

high-order local density

basic* iterated" basic*** iwraed****

Median 19h 18 22 20

uHinge 28 21 25 22
Max 60 59 59 60

(Mean) 24.5 22.2 25.9 24.1

* Actual total minorities: 16,17,18,19,19,20,20,28,28,60

* Actual total minorities: 15,15,15,18,18,18,18,21,25,59

Actual total minorities: 18,19,19,20,22,22,24,25,31,59 S,'

*** Actual total minorities: 16,17,18,19,20,20,21,22,28,60

Note: For "h" see note to Exhibit 4. I

.

.

V N

%I

.5

! .5

i . a-

-k -Y V V. . I-..1W.

EXHIBIT 16: Results obtained when the bisector polish algorithm is applied using the (non-observed)
population centers of gravity at t=2.9. I

TOTAL MINORITIES (t - 2.9)

population bisectors

Median 19
uHinge 20

Max 25

(Mean) 18.8

Actual total minorities: 14,16,17,18,19,19,19,20,21,25

P-

N'p,'

'-I

1/V,N.J

EXHIBIT 17: Comparative performance for t - 2.7.

TOTAL MINORiTIE (t - 2.7)

curent* average-linkage" coniplete-linkage***

Median 25h 47h 35
u~linge 33 65 39
Max 73 97 56

(Mean) 29.7 51.1 36.0

*Actual total minorites: 16,18,20,23Z2,26,29,33,34,73
**Actual total minorities: 22,23,24,25,35,60,64,65,96,97
**Actual total minorities: 23,24,26,33,34,36,38,39,51,56

**** Already for t - 4.5, single-linkage gave a median number misclassified

of 98.

-. Note: For "h" see note to Exhibit 4.

EXIBIT 18: Minority counts for iterated bisector polish algorithmns with 5-dimensional data.

TOTAL MINORITIES

t-3.2 t-2.9 t-2.7

high-order* local dens" high-order** local dens** highorer** local dns***

Median Igh 20 22 42h 26 46h
uHinge 22 29 24 46 42 56
Max 68 61 41 61 62 62

(Mean) 23.9 28.3 23.9 42.1 32.5 45.1

*Actual total minorities: 11,11,14,15,18,19,19,22,4268
**Actual total minorities: 13,17,17,18,19,21,27,29,61,61

SActual total minorities: 19,19,19,21,21,23,23,24,29,41

SActual total minorities: 24,29,31,40,41,44,45,46,60,61

SActual total minorities: 19,21,21,25,26,26,38,42Z45,62
****** Actual total minorities: 19,29,37,45,45,48,50,56,60,62

Note: For "h" see note to Exhibit 4.

"W, V
-7~

EXHIBIT 19: Results for iterated bisector algorithms with unequal variance test beds.

TOTAL MINORITIES

high-order local density
).-3* X-2.7*)-3*** X-2.7***

Median 13 17h 14 18h

uf-inge 17 21 16 24

Max 22 61 53 61

(Mean) 13.9 25.1 17.9 22.8

* Actual total minorities: 7,11,11,11,12,14,16,17,18,22

* Actual total minorities: 10,14,16,16,17,18,20,21,58,61
* Actual total minorities: 8,11,12,12,13,15,15,16,24,53

*~Actual total minorities: 12,14,15,16,17,20,22,24,27,61

- Note: For "h" see note to Exhibit 4.

j..

***Ata oa inrte:1,41,1,72,22,76

'p
4

!~"

-',,-.S ,, ,- r,"+,.,".- .. +"" ""' '-S ' . '"' " J' '" . '" '" - i" " " ''l " :,' +1-J" +P " :" "
" ' :

+" r l" " > i .. i i + i -

'- -

EXHIBIT 20: Results from using maximum likelihood and the population bisectors to classify the

unequal variance data. The maximum likelihood method used the population means and variances; the

bisector method used only the means.

TOTAL MINORITIES

max. likelihood pop. bisectors

X-3*).-2.7"* X-3*** X-2.7****

Median 12h 16 13 17

uHinge 15 19 15 18

Max 18 23 22 24

(Mean) 12.6 16.4 13.5 16.6

* Actual total minorities: 8,9,10,11,12,13,13,15,17,18

* Actual total minorities: 10,13,14,14,16,16,17,19,22,23
* Actual total minorities: 7,9,11,11,12,14,14,15,20,22

**** Actual total minorities: 10,12,15,16,17,17,18,18,19,24

Note: For "h" see note to Exhibit 4.

V!

11

5,i

4,ti '% '.,4
S ~ S~S~5* ~

0 oo0

0co 0 0 0 0

?4 0 p6 0

00 00

0 0

00

-6 -4 -2 0 2 4 6 8 1

0

00

0

In 0 0

o 00 s 0

0 g0 -00 00 o3 0 0

0 0 4900 0

0 0

*0 0

0 0

-6 -4 -2 0 2 4 6 8 10
U EXHIBIT 21: Two, "ypical" realizations of the unequal-shape test beds. The upper

panel was generated with t-3.2 and gave 30 Ital minouries with both of dhe iterated
bisector algcrius. Thwe lower panel (t-3.7) gave 9 total minorities with die local
density and iterated bisector algorithm and 11 tota nminorities with die high-order and
iterated bisector ulgoridam.

EXHIBIT 22: Total minorities for the iterated bisector algorithms with the unequal-shape test beds.

TOTAL MINORITIES

high-order local density

t-3.7* t-3.2** t-3.7*** t-3.2****

Median 13 31 10h 30

uHinge 24 34 17 33

Max 3.4 50 27 s0

(Mean) 15.8 29.3 13.2 29.4

*Actual total minorities: 2,7,7,11,11,15,17,24,30,34

SActual total minorities: 10,14,22,30,30,32,34,34,37,50

SActual total minorities: 6,8,9,9,9,12,16,17,19,27

SActual total minorities: 13,16,25,28,30,30,32,33,37,50

Note: For "h" see note to Exhibit 4.

Uo

N N N N N , e W._ez 'ez..e 10

APPENDIX - Code for Algorithms
(by Katherine M. Hansen)

All the clustering programs are written in the "C" language. We provide
code for all the high-order and local density core-point algorithms below. The
printout is divided into 6 files, formatted as follows:

1) "defs.c" (2 pages)
This file contains all of the type definitions and variable declarations
required by the programs.

2) "hiormain.c" (1 page) - basic high-order algorithm

"densmain.c" (1 page) - basic local density algorithm
"hoibmain.c" (1 page) - high-order and (basic & iterated)

bisector algorithms
'ldibmain.c" (1 page) - local density and (basic & iterated)
bisector algorithms

These are the main modules for each of the 4 core-point programs.
3) "modules.c" (10 pages)

This file contains the modules (functions) called by the main modules.
To run one of the algorithms on a particular data set, the user should: .

1) Copy the data into the file "datfile". Each line of the file should contain
exactly one entry. The first entry should be the first variable for the first
data point. The second entry is the second variable, first data point, etc.
The last line of "datfile" should be the last variable of the last data point.

2) Edit the first 8 lines of "defs.c", so that NROW, NCOL, NCLUST, W
NCORE, and NN are set appropriately. (For the high-order algorithms, k
NCORE and NN may be set arbitrarily.)

3) In order, join the files "defs.c", the desired main module, and "modules.c".
On a UNIX operating system, the command would be, for example:

cat defs.c hiormain.c modules.c > hiorder.c

The required source code is now held in the file "hiorder.c".
4) Compile the source code, to generate an executable file. On a UNIX

system, the appropriate command would be:

cc hiorder.c -lm

The executable code would be contained in a file a.out.
5) Run the executable program. The classifications will be placed in a file

called "countfile". Additional information may be placed in other files, as
follows: Ie

Al1

"edgefile" (all 4 programs). Information on the NROW-I edges of the
complete spanning vine. The 2 endpoints, minrank, maxrank,
criterion, and minsize of each edge are placed in the file.
"corefile" (all 4 programs). Information on the NCORE-NCLUST
edges of the core point vines. For each edge the 6 values just
described above are placed in the file.
"noncorefile" (hior and dens). Information on the NROW-numcore
edges linking non-core points to core point vines. For each edge, the
6 values described above are placed in the file.
"gravfile" (hoib and ldib). Coordinates of the (iterated) centers of
gravity of the core point clusters. Each row of the file contains the
coordinates of the core center.

aA2

do q

60 % q

1 A2 S

S

/* defs.c
type and variable definitions for "C" programs */

include <stdio.h>
include <math.h>
#define NROW 150 /* number of data points */
#define NCOL 2 /* dirrension of data */
#define NCLUST 3 /* number of clusters desired */
#define NCORE 50 /* number core points desired, for density algorithms */
#define NN 10 /* neighbor used to determine density */
#define MAXINCLUDE 15

/* MAXINCLUDE is number of nearest neighbors of each point to keep as
candidate edges; using MAXINCLUDE - 15 will save run-time, but
for large data sets with well-defined clusters, MAXINCLUDE may
need to be increased */

#define LENGTH (NROW*MAXINCLUDE)/2

typedef double DATA[NCOL);

typedef struct
double distto;
int ptnum;

} DIST, DISTANCES[NROW];

typedef struct {
int num;
DISTANCES dat;

} DISTMAT;

typedef struct {
int ptnum;
DATA coord;

} POINT;

typedef struct
int start;
int end;
int minrank;
int birankplus; /* birank + 5; used in all calcs needing birank *I
double scqdist;
int minsize;
double criterion;

I EDGESTRUCT; /* structure of candidate edges */

typedef struct
int lowc;
DATA coord;

I GRAVCENT;

typedef struct (/* cluster status of each point */
int lowc; /* lowest numberes point contained in same cluster */
int sizec; /* number of points in cluster */
int order; /* order of point, after preliminary run /
mt corept; /* indicates whether or not a core point */

I CLUSTINFO;

typedef struct (
int ptnum;
double dist;

DENSINFO;

FILE *datfp, /* input file */
*countfp, *corefp, *edgefp, *gravfp, *noncorefp, /* output files */
*fopen);

int locmaxct, numcore, truesize,
connection[NROW] [NROW], locmax(NROW],

A3

V' ' '' -- 1

WR~ . nxj 'jJ~.. .VU N)V1 W -.;.- xwv.,*N-

rankdat (NROWJ ENROW), newrarikdat [NROWJ ENROW],
logdens sorto, sort rowso;

double logviect[NROW], logdens[NROW], logo;
CLUST INFO lowest (NROWJ];
DENS INFO densdist !NROW);
DISTMAT distdat (NROWJ, newdistdat [NROW];
EDGESTRUCT edgedat [LENGTH), newedgedat [LENGTH);
GRAVCE1NT center LNCLUSTI, newcent (NCLUS T];
POINT pointdat (NROW), newptdat [NROW);

N

AA

/* hiormain.c
main module for hiorder algorithm *

man)

datfp - fopen("datfile I., " r");
countfp -fopen("countfile","w");

corefp =fopen("corefilen,"w"); :
edgefp =fopen("edgefile","w");

noncorefp - fopen("noncorefile","w");
initialize data structureso;
reset lowest(l);
find I ists(pointdat, distdat, NROW);
firsE sort(distdat, rankdat, NROW);
load edgemat (distdat, rankdat, edgedat, &truesize, NROW, pointdat);
grow vine(O, edgedat, truesize, NROW-1);
find hiorderpoints(&numcore);
reset lowest(O);
find Uists(newptdat, newdistdat, nuxncore);
f irst -sort (newdistdat, newrankdat, nurncore);
load edgemat (newdistdat, newrankdat, newedgedat, &truesize, nuxncore, newptdat);
grow-vine (1, newedgedat, truesize, numcore-NCLUST);
load-noncore-edgernat(&truesize);
grow -vine(2, edgedat, truesize, NROW-numcore);
print-classification 0;

A55

% - %0. 10 -0

- ~ ~ ~ ~ F~ WV .f.M. Wl-a a M A Al-.A..

/* densmain.c
main module for the local density algorithm *

main()

datfp - fopen("datfile","r");
countfp -fopen("countfile","w");

corefp -fopen("corefile,"wl);

edgefp -fopen("edgefile","w");

noncorefp - fopen("noncorefile", "w");
initialize data structureso;
reset lowest(l);
find d ists(pointdat, distdat, NROW);
first sort(di3tdat, rankdat, NROW);
load _edgemat (distdat, rankdat, edgedat, &truesize, NROW, pointdat);
reset matrix(connection);
grow Vine(O, edgedat, truesize, NROW-l);
smooth densities 0;
find local maxes(&locmaxct);
find hi densjpoints 0;
qsort((char *) densdist, NROW, sizeof(DENSINFO), logdens sort);
make -newptdat (&nuxncore);
reset lowest (0) ;
find dists(newptdat, newdistdat, numcore);
first sort (newdistdat, newrankdat, numcore);
load edgemat(newdistdat, newrankdat, newedgedat, &truesize, nuxncore, newptdat);
reset matrix(connection);
grow v- ine (l, newedgedat, truesize, numcore-NCLUST);
load -noncore -edgemat (&truesize);
grow vine(2, edgedat, truesize, NROW-nuxncore);
print classification 0;

MA6

/* hoibmain.c
main module for the hiorder and bisector and
hiorder and iterated bisector algorithms *

maino(

datfp - fopen("datfile", "r");
countfp -fopen("countfile"l,"w"); .

corefp -fopen("corefile","w");

edgefp =fopen("edgefile","w");%

gravfp =fopen("gravfile","w");

initialize data structures();
reset lowest(l);
find dists(pointdat, distdat, NROW);
first sort(distdat, rankdat, NROW);
load,_7dgexnat(distdat, rankdat, edgedat, &truesize, NROW, pointdat);
grow vine(O, edgedat, truesize, NROW-l);
find hiorderpoints (&nurncore);
reset?_lowest (0);
find 'dists(newptdat, newdistdat, numcore);
first sort(newdistdat, newrankdat, numcore);
load edgemat(newdistdat, newrankdat, newedgedat, &truesize, numcore, newptdat);
grow vine (1, newedgedat, truesize, numcore-NCLUST); %5
resetE centers (center);N
find, gravity centers 0;
gravity center -classify(center); .

print classification 0;
reset__centers (newcent);
find iteratedga~enes0
gravity _center -classify(newcent);
print classification 0;

A7 0

C&Iy~bk5

/* ldibmain.c
main module for local density and bisector and
local density and iterated bisector algorithms *

*main()

datfp - fopen("datfile", "r");
countfp -fopen("countfile", "w");
corefp =fopen("corefile", "w");
edgefp -fopen("edgefile", "w");
gravfp =fopen("gravfile", "w");
initialize -data-structureso;
reset lowest(l);
findUists(pointdat, distdat, NROW);
first sort(distdat, rankdat, NROW);
load edgemat(distdat, rankdat, edgedat, &truesize, NROW, pointdat);
reset matrix(connection);
grow -vine(O, edgedat, truesize, NROW-1);
smooth densitieso;
find local maxes(&locmaxct);
find-hi densypointso;
qsort((char *) densdist, NROW, sizeof(DENSINFO), logdens sort);
make_newptdat (&numcore);
reset lowest(O);

* find daists(newptdat, newdistdat, numcore);
firstE sort (newdistdat, newrankdat, numcore);
load -idgemat(newdistdat, newrankdat, newedgedat, &truesize, nuxncore, newptdat);
reset rratrix(connection);
grow -v-ine (1, newedgedat, truesize, numcore-NCLUST);
reset-centers (center) ;
find gravity centerso;
gravity center_classify(center);
print -classificationo:
reset centers(newcent); 1* iterating bisectors *

* find ITterated_gray-centers 0;
grav ty_center_classify(newcent);
print-classification 0;

A8

/* modules.c
modules of "C" code used in each of the clustering programs *

initialize data structures()
/* initial~zes -pointdat and logvect structures ~

int row,col;

for (row - 0; row < NROW; row++)
pointdat(rowl-ptnum - row;
for (col - 0; col < NCOL; col++)

(void) fscanf(datfp,"%f",&pointdat~rowJ .coord(coll);

logvect[OJ = 1;
for (row - 1; row < N'ROW; row++)

logvect(row] = log((double)row) + 1;

reset -lowest (reset-core)
1* resets the lowest vector ~

mnt reset-core;

mnt row;

if (reset Tcore - 1) /* first run; set all points as non-core *
for (row - 0; row < NROW; row++)

lowest(row].lowc =row;

lowest~row).sizec =1;

* lowest[rowJ.order =0;

* lowest(row).corept =0;

else or (ow- 0 row /* second run; leave core points indicated as such *
elsefor(ro - ; rw <NROW; row++)

lowest~row].lowc =row;

lowestjrow).sizec -1;

lowest~row].order -0;

find dists(pointmat, distrnat, size)
/* f-inds euclidean distance from each point to each other *

POINT pointmat (NROWJ;
DISTMAT distmat (NPOW); i

* mt size;
mnt row,col,k;
double tempdist;

for (row - 0; row < size; row++)
for (col - row ; col < size; col++)

if (row -- ccl)
distmat(rowJ.dat[colJ.distto -0;

distmat(rowJ .dat[col] .ptnumr row;

else
ternpdist - 0;
for (k - 0; k < NCOL; k++)

tempdist - tempdist + (pointmatfrow].coord~k]-
pointmat(colJ .coordtk])*(pointmat[rowl .coord~kI
pointmat (col) .coord[k));

distmat[row] .dat (col] .distto -tempdist;

A9

-~ ~P.) 9~*j. "- ~~ *.-P. ~ ~"P 'MAIM*

~V W ~ ~ V L~ V~~ ~ ~f ~ X =' W~~ N '~ 1~~. 'V~ .9 ~ 4..M~ .. ~. . - - -~ - -' " %

distmat[rowJ-dat(col].ptnun = col;
distmat(col] .dat(row] .distto =distmat~row] .dat (cal] .distta;
distmat~colJ.dat[row].ptnun = row;

distmat[row].num - row;

first sart(distmat, rankmat, size)
1* sorts each row of distance matrix *

DISTMAT distmat fNROWJ;
int rankrtat [NROW] (NROW];
int size;

mnt col, row, temp;

for (row - 0; row < size; row++)
qsort((char *)distmat (row] .dat,size,sizeof(DIST) ,sort rows);
for (col - 1; col < size; col++)

temp - distmat[row) .dat[col] .ptrium;
rankrnat [row] (temp] - col;

load -edgemat(distmat, rankmat, edgemat, truesize, size, pointmat)
I* creates the matrix of candidate edges; includes all edges

with minrank < MAXINCLUDE *

DISTMAT distmat (NROW];
mnt *truesize, rankmat[NROW][NROWJ, size;
EDGESTRUCT edgemat (LENGTH);
POINT pointmat (NROW];

mnt raw, cal, i;

i - 0;
for (row - 0; row < size; row++) 6

for (cal - row + 1; cal < size; col++
if (rankmat(row] (colJ<MAXINCLUDEI IrankmattcolJ Erow]<MAXINCLUDE){

edgernat(i] .start - paintmat(row] .ptnum;
edgemat Ii].end - pointmat(colJ .ptnum;
if (rankxnat(row][col] < rankmnat(colJ[row])

edgemat (i) .minrank = rankrnat (raw)[cal);
edgemat (ii .birankplus = rankmat (call [row) + 5; -

d"
else(

edgemat [ii .minrank = rankmat~col] trawl;
edgemat~iJ.birankplus = rankmat(raw)(col] + 5;

edgematti] .sc~dist - distmattrow] .dat~rankmrat(raw) (cal]) .distto;
edgemat[i].minsize = 1;-1
edgemat ('1.criterion - (edgemat~iJ .birankplus);
ii +1

*truesize =i;

reset matrix(mat)
/* may be used with either checked or connection matricies ~

mnt mat [NROW] (NROW];

A10

Orr O, e. r V

?WWII K- -U V IL -V M--II xwf

int i, j;

for (i - 0; 1 < NROW; i++)
for (j - 0; j < i; j++)

matfi] (j] - 0
mat~j) [i) - 0;

grow vine (type, edgernat, truesize, numlinks)
f* finds the edges which are to be added to vine; the variable "type"

indicates whether preliminary vine (type - 0), core point vine
(type - 1), or final vine (type - 2) *

EDGESTRUCT edgemat [LENGTH];
int truesize, type, numlinks;
I
mnt numedges, nuxnleft, newc, newsize;

nuinleft =truesize;

numedges -0;

while (numedges < numlinks)
minfirst(edgenat, numleft);
add edge(type, edgemat[0], &newc, &newsize);
update criterion(edgemat, &numleft, newc, newsize);
nuniedes - nwnedges + 1;

min first(edgemat, nunileft)
1* places edge with lowest criterion value in first position of edgernat *

EDGESTRUCT edgemat (LENGTH];
mnt nuxnleft;

mnt row, temprow;
EDGESTRUCT ternpedge;

J
ternprow -0;

for (row -1; row < nuileft; row++)
if (edgemat (row] .criterion < edgemat [ternprowj .criterion)

temprow - row;
else if ((edgemat[rowJ.criterion == edgemat~temprow.criterion)&&

(edgemat [row] .sc~dist < edgemat (ternprowJ .sc~dist))
temprow -row;

tempedge - edgernat [0];
edgenat (0] - edgemat~temprow];
edgemat(tenprow] - tempedge;

update criterion(edgenat, numleft, newc, newsize)
/* updates the "criterion" of each candidate edge after a new addition

to the vine; deletes all circuit-forming edges. *

EDGESTRUCT edgeniat (NROW];
mnt *nuzbleft, newc, newsize;

mnt pos, ternpint;

for (pos - 0; pos < *numleft; pos++)

if ((lowest~edgemat(posJ .start) .lowc ==lowest (edgernat (pos] .end] .lowc))I e

All

IM T- 77TIT-Ar

for (texnpint =pos; ternpint < *numleft; tempint++)
edgernat(tempintj=edgemat(tempint + 1);

*numleft -*numleft - 1;
P03 - pos -1

else if (lowest~edgematfpos).startJ.lowc -newc
if (lowest[edgemat(posJ .endJ .sizec > newsize)

edgernat~posJ.minsize - newsize;
else edgernat (posJ .minsize - lowest [edgernat [pos) .endJ .sizec;
edgematfposj .criterion -

(edgemat (posJ .birankplus) *(logvect [edgemat (posJ .minsize]);

else if (lowest(edgerat(posend].lowc == newc
if (lowest~edgemat(pos] .start] .sizec > newsize)

edgexnat~pos].minsize - newsize;
else edgernat (pos) .minsize - lowest tedgernat (posJ .start) .sizec;
edgernat [pos] .criterion -

(edgemat (pos) .birankplus) * (logvect [edgemat [pos) .minsizeJ);

add edge(type, edge, newc, newsize)
/ aWdds edges to vine, writes them in order in appropriate file *

EDGESTRUCT edge;
* mt type, *newc, *newsize;

mnt col, tempint;

if (type -= 0)
fprintf(edgefp,"%5d %5d %5d %5d %f %5d\n",edge.start, edge.end, edge.rninrank,

edge.birankplus - 5, edge.criterion, edge.minsize);
else if (type -- 1)
fprintf(corefp,"%5d %5d %5d %5d %f %5d\n",edge.start, edge.end, edge.minrank,

edge.birankplus - 5, edge.criterion, edge.rninsize);
fflush(corefp);

else
fprintf(noncorefp,"%5d %5d %5d %5d %f %5d\n",edge.start, edge.end,

edge.minrank, edge.birankplus - 5, edge.criterion, edge.rninsize);
* lowestfedge.start].order +- 1;

lowest~edge.end].order +- 1;
connection Eedge.startJ (edge.end) = 1;
connection [edge.end) [edge.start) = 1;
if (lowest[edge.startJ.lowc < lowest(edge.end).lowc)

*newc - lowest(edge.startJ-lowc;
*newsize = (lowest(edge.start) .sizec + lowest(edge.end] .sizec);
tempint - lowest[edge.end).lowc;
for (col - 0; col < NROW; col++)

if (lowest(colJ .lowc ==tempint)

lowest(colJ.lowc =*newc;

lowest(colJ.sizec =*newsize;

else if (lowest[colJ-lowc -- *newc)
lowest[col).sizec - *newsize;

else if (lowestfedge.start].lowc > lowest(edge.end].lowc)I
*newc = lowest~edge.end).lowc;
*newsize - (lowest (edge.start] .sizec + lowest (edge.end) .sizec);
teinpint - lowest~edge.startJ .lowc;
for (col - 0; col < NROW; col++)

if (lowest(colJ.lowc -=tenipint){
lowest(colJ.lowc -*newc;
lowest[colJ.sizec - *newsize;

A12

else if (lowest~col].lowc ==*newc)

lowest[colJ.sizec - *newsize;

smooth densitieso(
/* smoothes densities on the vine structure ~

int ptnum, col, tempct, changed;
double newlogdens[NROW], tempdens[lO], ors2;

for (ptnunl - 0; ptnum < NROW; ptnuxn++)
logdens (ptnumJ -2* (log (distdat [ptnum]).dat (NNJ .distto));

changed - 1;
while (changed -- 1)

changed - 0;
for (ptnum - 0; ptnum < NROW; ptnum++)

if (lowest(ptnuxn.order -= 1)
newlogdens(ptnui) - logdens[ptnunl;

elseI
tempdens(OJ - logdens~ptnumj;
tempct - 1;
for (col - 0; cal < NROW; col++)

if (tempct <= lowest[ptnum].order)
if (connection[ptnurlfcolJ -- 1)

tempdensltempctl - logdens(col];
tempct += 1,

find orstat2(tempdens, &ors2, tempct);
newlogdens[ptnum] - ors2;

for (ptnum -0; ptnum < lNROW; ptnum++)
if (logdens~ptnum] !- newlogdens[ptnumn)

changed - 1;
logdenslptnun) - newlogdens~ptnum);

find orstat2(tempdens, ors2, order)
/* f~nds second-highest element of ternpdens ~

double ternpdens[l0J, *ors2;
int order;

mnt row, maxpos, pos2;
maxpos = 0;
for (row - 1; row < order; row++)

if (tempdens~rowJ > tempdens~maxpos])
maxpos - row;

if (maxpos -- 0)
M pos2 - 1;

else pos2 =0;
for (row - 0; row < order; row++)

if ((tempdens~row] > ternpdensfpos2J) && (row !=maxpos))

pos2 - row;
*ors2 - tempdens(pos2J;

find local-maxes(locmaxct)

A13

/* identifies the local maxima on the vine ~

int *locmaxct;

int row, col, maxpos;

for (row - 0; row < NROW; row++)
maxpos - row;
for (col = 0; col < NROW; col++)

if (connection(row] (col) == 1)
if (logdens[colJ > logdens[row])

maxpos =col;

if (maxpos -- row)I
locmax[*locmaxct] -row;

*locmaxct += 1;

find -hi -dens~points(
/* Computes local density of each point *

mnt row, col, max, checked[NROWJ (NROWJ;

for (row = 0; row < ?JROWI; row++)
densdist(row).ptnun row;
densdist(row] .dist -0;

for (row = 0; row < locmaxct; row++)I
d reset matrix(checked);

-max - -locmax~row];
for (col = 0; col < NROW; col++pI

if (connection~max] (colJ -- 1)
checkedtmax) [col] - 1;
checked~col) [maxJ = 1;
follow-branch(max, max, col, checked);

follow -branch(curmax, ptl, pt2, checked)
/* recursive procedure for moving about vine structure ~

int curmax, ptl, pt2, checked[NROWJ[NROWJ;

mnt nuxn, conpts(NROWJ, tempct;
double diff;

tempct - 0;
if (logdens[pt2J <- logdens(ptlJ)(

diff = logdens~curmaxj - logdens[pt2];
if (diff > densdist~pt2].dist)

densdisttpt2l~dist - diff;
for (nuxn - 0; nunm < NROWf numn4+)

if ((connection(pt2J [num] - 1) && (checked~pt2] [num] = 0))
checked tpt2] (num] - 1;
checked~num) [pt2] = 1;

* conpts(tempct] = num;
tempct 4*- 1;

for (nurn 0; nwn < tempct; num++)
follow-branch(curmax, pt2, conpts~numj, checked);

- A14

logdens sort (densl,dens2)

/* sort function for qsort *

DENSINFO *densl, *dens2;

if W(densl).dist < (*dens2).dist)
return(-l);

else if ((densl).dist > (*dens2).dist)
return(l);

else return (0)

make newptdat (numcore)
/* makes new data matrix, containing only core points *

mnt *flncore;

mnt row;

for (row - 0; row < NCORE; row++)
newptdat (row] - pointdat fdensdist (row] .ptnum];
lowest [densdist [rowJ .ptnumnJ.corept = 1;

row - NCORE-l;
*numcore - NCORE;
while (densdistfrow].dist =- densdist[NCORE].dist)

lowest~densdist(row] .ptnumJ .corept = 0;
row -- 1;
*numcore -- 1;

fprintf(countfp, "numcore - %d\n", *numcore); "

find _gravity centerso(
/* finds gravity center of each core-point cluster*/5

mnt row, col, dim, num;

num = 0;
for (row - 0; row < NROW; row++) -

if ((lowestfrow].lowc -- row) && (lowest(rowll.corept ==1)){

for (col - 0; col < NROW; col++)
if (lowest(colJ.lowc -= row)

for (dim - 0; dim < NCOL; dim++)
center~num) .coordtdim] = center~numn].coord~dim] +

for (dim - 0; dim < NCOL; dim++) pitafo].or~i]
center(num] .coord[dim]=center(num) .coord~dimJ /lowest(row] .sizec;

center(num].lowc - row;
nurn +- 1;

fprintf(countfp,"Initial classification:\n");

gravity_ center classify (cent)%
/* classifies points based on nearest center of gravity %.5

GRAVCENT cent ENCLUST];

A15
Y %.

mnt row, mink, col, k;
double temprnin, ternpdist;%

for (row - 0; row < NROW; row++)%
mink -=0;
tempmin - 0.0;
for (col - 0; col < NCQL; col++)

tempmin - tempmin + (pointdatfrowJ.coord(col]
cent(0] .coord(col])*(pointdat(row] .coordfcol]
cent (0J.coord[col]);

for (k - 1; k < NCLUST; k++)
tempdist - 0.0;
for (col - 0; col < NCOL; col++)
tempdist - tempdist + (pointdat(rowJ.coord[coll

cent [k] .coord[colJ) *(pointdat~row] .coord[colJ
cent (ki.coord(colJ);

if (tempdist < ternprin) (
tempmin - tempdist;
mink - k;

lowest(rowJ .lowc - cent (mink) .lowc;

find iterated,_gray centers()
/* f~nds iterated centers of gravity *

int row, col, dim, count;

for (row = 0; row < NCLUST; row++)
newcent[rowJ .lowc - center~row] .lowc;
count -=0;
for (col - 0; col < NROW; col++)

if (lowest(col].lowc -- center~row].lowc)(
count +- 1;
for (dim - 0; dim < NCQL; dim++)

newcent(row].coord~dimJ - newcent[rowJ.coord[dim] +
pointdat(col] .coord~dim];

for (col -0; col < NCOL; col++)
newcent(row) .coord~colJ = newcent (row) .coord[col) Icount;

for (col - 0; col < NCOL; col++)
* fprintf(gravfp,"%f ",newcenttrow] .coord[col]);

* fprintf(gravfp, "\n");

fprintf (countfp, "\n");
fprintf (countfp, "Classification after iteration:\n");

* reset centers (cent)
/* re-initializes center structure; used on both center and newcent ~

GRAVCENT cent (NCLUST];

int row,col;

for (row - 0; row < NCLUST; row++)%
for (col - 0; col. < NCOL; col++)

cent~rowj.coord(colJ 0;

A16

- - -- -a%

find hiorder-points (nurncore)
/* diesignates points of order > 2 as core points *

int *nwncore;

mnt row, ternpnum;

ternpnuxn - 0;
for (row - 0; row < NROW; row++)

if (lowest[row].order > 2)
newptdat[tempnum] -pointdat~rowJ;

lowest(row].corept -1;

ternpnum += 1;
I

*numcore = tempnun;

sort-rows (distl,dist2)
1* sort function for qsort ~

DIST *distl, *dist2;

if ((*distl) .distto > (*dist2) .distto)
return(1);

else if ((*distl) .distto < (*dist2) .distto)
return(-l);

else return (0);

load -noncore -edgemat (truesize)
/* creates the m~atrix of candidate edges for non-core points *

mnt *truesize;

mnt row,col,i;

i = 0;
for (row - 0; row < NROW; row++f)

for (col - row + 1; col < NROW; col++
if (((lowest~colJ.corept !- 1)II(lowest[rowl.corept 1)&

((rankdat~rowJ (col] < MAXINCLUDE) II
(rankdat~col] (row] < MAXINCLUDE)) M

edgedat~iJ.start - row;
edgedattiJ.end - col; S

if (rankdat~rowli(col] < rankdat (ccl)[row])
edgedat [ii .rinrank = rankdat (row] (col];
edgedat [i] .birankplus = rankdat (col] [row) + 5;

else
edgedat~i] .minrank = rankdat [col] [row];
edgedat~i] .birankplus = rankdat(row] [ccl] + 5;

edgedat[i] .sqdist
distdat (row] .dat [rankdat [row][col)].distto; e

edgedat~il.minsize - 1;
if ((lowest[coll.sizec -=1)&&(lowest[rowj.3izec - 1)&

((lowest~col].corept !-1)&&(lowest(row] .corept !-1)))

* edgedat~i].criterion =NROW + 6;
* /* above prevents links between two single noncore points *

else edgedat (i] .criterion -edgedat [i] .birankplus;
ii + 1;

A17
I.

S."r%

*truesize - i;

P

print classificationl)
/* prTnts classification results in file "countfile" */

int row;

for (row - 0; row < NROW; row++) r
fprintf(countfp, "point # %d in cluster %d\n", row, lowest[row].lowc);

fprintf(countfp, "\n");

A18

i

II

,.

a.

'p,

I|

- ~~o-.- -q~

' WVYZW

2500

w qS

0% % %
N,

